Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets

نویسندگان

  • Y. K. Tse
  • Vo V. Anh
  • Quang Minh Tieng
چکیده

In this paper we examine the ̄nite-sample properties of the approximate maximum likelihood estimate (MLE) of the fractional di®erencing parameter d in an ARFIMA(p, d, q) model based on the wavelet coe±cients. Ignoring wavelet coe±cients of higher order of resolution, the remaining wavelet coe±cients approximate a sample of independently and identically distributed normal variates with homogeneous variance within each level. The approximate MLE performs satisfactorily and provides a robust estimate for which the short memory component need not be speci ̄ed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal and Periodic Long Memory Models in the Inflation Rates

This paper considers the application of long memory processes to describe inflation with seasonal behaviour. We use three different long memory models taking into account the seasonal pattern in the data. Namely, the ARFIMA model with deterministic seasonality, the ARFISMA model, and the periodic ARFIMA (PARFIMA) model. These models are used to describe the inflation rates of four different cou...

متن کامل

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

Studies in Nonlinear Dynamics and Econometrics

By design a wavelet’s strength rests in its ability to localize a process simultaneously in time-scale space. The wavelet’s ability to localize a time series in time-scale space directly leads to the computational efficiency of the wavelet representation of a N × N matrix operator by allowing the N largest elements of the wavelet represented operator to represent the matrix operator [Devore, et...

متن کامل

A Generalized ARFIMA Process with Markov-Switching Fractional Differencing Parameter

We propose a general class of Markov-switching-ARFIMA processes in order to combine strands of long memory and Markov-switching literature. Although the coverage of this class of models is broad, we show that these models can be easily estimated with the DLV algorithm proposed. This algorithm combines the Durbin-Levinson and Viterbi procedures. A Monte Carlo experiment reveals that the finite s...

متن کامل

An Approximate Wavelet MLE of Short and Long Memory Parameters

By design a wavelet's strength rests in its ability to localize a process simultaneously in time-scale space. The wavelet's ability to localize a time series in time-scale space directly leads to the computational e ciency of the wavelet representation of a N N matrix operator by allowing the N largest elements of the wavelet represented operator to represent the matrix operator [Devore, et al....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2002